LONDON, Sept. 11 (Xinhua) -- Scientists in Manchester revealed Tuesday they have developed the world's first non-antibiotic treatment for tuberculosis.
The team at the University of Manchester hoped the compound, developed after 10 years of painstaking research, will be ready for trials on humans within three to four years.
Project-leader Professor Lydia Tabernero said Tuesday: "For more than 60 years the only weapon doctors have been able to use against TB is antibiotics. But resistance is becoming an increasingly worrying problem and the prolonged treatment is difficult and distressing for patients."
Patients are currently forced to take a cocktail of strong antibiotics over 6 to 8 months, often enduring unpleasant side effects with a 20 percent risk that the disease will return.
A spokesman at the university said: "Although a vaccine for TB was developed 100 years ago, one in three people across the world are thought to be infected with the infectious disease. About 1.7 million die from the bug each year worldwide and 7.3 million people were diagnosed and treated in 2018, up from the 6.3 million in 2016."
It is most common in Africa and Asia, but on the rise in Britain, with London often described as the TB capital of Europe, added the spokesman.
A drug, developed by the researchers, works by targeting Mycobacterium tuberculosis' defenses rather than the bacteria itself and it can also take out its increasingly commonly antibiotic resistant strains.
The research funded by the Medical Research Council has been published today in the Journal of Medicinal Chemistry, describing the drug as the first non-antibiotic drug to successfully treat tuberculosis in animals.
The Manchester team's discovery has been proven effective in guinea pigs at Rutgers University in the United States.
The animals with acute and chronic TB infection were treated with the compound, which was discovered after investigating dozens of other derivatives and compounds thought to have similar properties.
Tabernero added: "The fact that the animal studies showed our compound, which doesn't kill the bacteria directly, resulted in a significant reduction in the bacterial burden is remarkable.
"By disabling this clandestine bacteria's defenses, we're thrilled to find a way that enhances the chances of the body's immune system to do its job, and thus eliminate the pathogen."
Mycobacterium Tuberculosis secretes molecules called Virulence Factors, the cell's secret weapon -which block out the immune response to the infection, making it difficult to treat.
Professor Tabernero added: "The great thing about MptpB is that there's nothing similar in humans - so our compound which blocks it is not toxic to the human cells. TB is an amazingly difficult disease to treat so we feel this is a significant breakthrough."
She said the next stage of research is to optimize further the chemical compound, with clinical trials on humans possible within four years.